The HD molecule in small and medium cages of clathrate hydrates: quantum dynamics studied by neutron scattering measurements and computation.

نویسندگان

  • Daniele Colognesi
  • Anna Powers
  • Milva Celli
  • Minzhong Xu
  • Zlatko Bačić
  • Lorenzo Ulivi
چکیده

We report inelastic neutron scattering (INS) measurements on molecular hydrogen deuteride (HD) trapped in binary cubic (sII) and hexagonal (sH) clathrate hydrates, performed at low temperature using two different neutron spectrometers in order to probe both energy and momentum transfer. The INS spectra of binary clathrate samples exhibit a rich structure containing sharp bands arising from both the rotational transitions and the rattling modes of the guest molecule. For the clathrates with sII structure, there is a very good agreement with the rigorous fully quantum simulations which account for the subtle effects of the anisotropy, angular and radial, of the host cage on the HD microscopic dynamics. The sH clathrate sample presents a much greater challenge, due to the uncertainties regarding the crystal structure, which is known only for similar crystals with different promoter, but nor for HD (or H2) plus methyl tert-butyl ether (MTBE-d12).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of the confinement on the intra-cage dynamics of molecular hydrogen in clathrate hydrates

We have studied the diffusive mobility of hydrogen molecules confined in different size cages in clathrate hydrates. In clathrate hydrate H2 molecules are effectively stored by confinement in two different size cages of the nano-porous host structure with accessible volumes of about 0.50 and 0.67 nm diameters, respectively. For the processes of sorption and desorption of the stored hydrogen the...

متن کامل

Intra-cage dynamics of molecular hydrogen confined in cages of two different dimensions of clathrate hydrates

In porous materials the molecular confinement is often realized by means of weak Van der Waals interactions between the molecule and the pore surface. The understanding of the mechanism of such interactions is important for a number of applications. In order to establish the role of the confinement size we have studied the microscopic dynamics of molecular hydrogen stored in the nanocages of cl...

متن کامل

Inter-cage dynamics in structure I, II, and H fluoromethane hydrates as studied by NMR and molecular dynamics simulations.

Prospective industrial applications of clathrate hydrates as materials for gas separation require further knowledge of cavity distortion, cavity selectivity, and defects induction by guest-host interactions. The results presented in this contribution show that under certain temperature conditions the guest combination of CH3F and a large polar molecule induces defects on the clathrate hydrate f...

متن کامل

A molecular dynamics study of guest-host hydrogen bonding in alcohol clathrate hydrates.

Clathrate hydrates are typically stabilized by suitably sized hydrophobic guest molecules. However, it has been experimentally reported that isomers of amyl-alcohol C5H11OH can be enclosed into the 5(12)6(4) cages in structure II (sII) clathrate hydrates, even though the effective radii of the molecules are larger than the van der Waals radii of the cages. To reveal the mechanism of the anomalo...

متن کامل

The effect of classical and quantum dynamics on vibrational frequency shifts of H2 in clathrate hydrates.

Vibrational frequency shifts of H2 in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H2 in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 141 13  شماره 

صفحات  -

تاریخ انتشار 2014